Light-driven artificial enzymes for selective oxidation of guanosine triphosphate using water-soluble POSS network polymers.

نویسندگان

  • Jong-Hwan Jeon
  • Kazuo Tanaka
  • Yoshiki Chujo
چکیده

The light-driven artificial enzymes were constructed to realize unnatural reactions concerning bio-significant molecules. In this manuscript, the guanosine triphosphate (GTP)-selective oxidation is reported using the network polymers composed of polyhedral oligomeric silsesquioxane (POSS). We synthesized the water-soluble POSS network polymer containing the naphthyridine ligands to capture GTP inside the networks and the ruthenium complexes to oxidize the captured GTP under light irradiation. Initially, the binding affinities of the guanosine nucleosides to the naphthyridine ligand inside the POSS network polymer were evaluated from the emission quenching experiments. Accordingly, it was observed that the naphthyridine ligand can form the stable complex only with GTP (K(a) = 5.5 × 10(6) M(-1)). These results indicate that only GTP can be captured by the network polymer. Next, the photo-catalytic activity of the ruthenium complex-modified POSS network polymer was investigated. Finally, it was revealed that the network polymer can decompose GTP efficiently under light irradiation. This is the first example, to the best of our knowledge, to offer not only the GTP-selective host polymers but also the light-driven artificial enzyme for GTP oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Differential Kinetic Method Using ANN with a New Synthetic Reagent for Simultaneous Spectrophotometric Determination of Mercury and Palladium

A new selective reagent was used for simultaneous determination of mercury and palladium in real samples with their different kinetic spectrophotometric properties. The method is based on the difference in the rate of the oxidation reaction of the recently synthesized reagent, nitro benzoyl diphenylmethylen phosphorane (N-BDMP), with Hg2+ and Pd2+. The kinetic profiles were monitored and record...

متن کامل

Improvement of Dissolution Characteristics and Bioavailability of Tadalafil by Solid Dispersion Technique Using Water-soluble Polymers

The enhancement of oral bioavailability of poorly water-soluble drugs remains one of the most challenging aspects of drug development. Tadalafil a BCS class II drug is an impotence agent. It is indicated for the treatment of erectile dysfunction and is a selective inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type-5 (PDE-5).However, insolubility and poor dissolut...

متن کامل

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

Selective Flocculation for Coal De Mineralization

Selective flocculation has long been suggested as a method for the treatment of ultra-fine particles typical of which are those produced in a de-sliming process ahead of flotation. In this paper the results of the coal de-mineralization, using synthetic polyacrylamide polymers, are presented. A prescreening test on the suitability of the polymers using Run-Of-Mine (R.O.M.) coal and artificial m...

متن کامل

Vesicle traffic: Get your coat!

The budding of transport vesicles from the Golgi complex is initiated by activation of the small GTPase ARF; the discovery of enzymes that can convert soluble ARF-GDP to the active, membrane-associated form ARF-GTP will shed light on the mechanism and regulation of the formation of transport vesicles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 12 33  شماره 

صفحات  -

تاریخ انتشار 2014